Structural Maxent Models

نویسندگان

  • Corinna Cortes
  • Vitaly Kuznetsov
  • Mehryar Mohri
  • Umar Syed
چکیده

We present a new class of density estimation models, Structural Maxent models, with feature functions selected from a union of possibly very complex sub-families and yet benefiting from strong learning guarantees. The design of our models is based on a new principle supported by uniform convergence bounds and taking into consideration the complexity of the different sub-families composing the full set of features. We prove new data-dependent learning bounds for our models, expressed in terms of the Rademacher complexities of these sub-families. We also prove a duality theorem, which we use to derive our Structural Maxent algorithm. We give a full description of our algorithm, including the details of its derivation, and report the results of several experiments demonstrating that its performance improves on that of existing L1-norm regularized Maxent algorithms. We further similarly define conditional Structural Maxent models for multi-class classification problems. These are conditional probability models also making use of a union of possibly complex feature subfamilies. We prove a duality theorem for these models as well, which reveals their connection with existing binary and multi-class deep boosting algorithms. Proceedings of the 32 International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maxent-Stress Optimization of 3D Biomolecular Models

Knowing a biomolecule’s structure is inherently linked to and a prerequisite for any detailed understanding of its function. Significant effort has gone into developing technologies for structural characterization. These technologies do not directly provide 3D structures; instead they typically yield noisy and erroneous distance information between specific entities such as atoms or residues, w...

متن کامل

A hybrid Maxent/HMM based ASR system

The aim of this work is to develop a practical framework, which extends the classical Hidden Markov Models (HMM) for continuous speech recognition based on the Maximum Entropy (MaxEnt) principle. The MaxEnt models can estimate the posterior probabilities directly as with Hybrid NN/HMM connectionist speech recognition systems. In particular, a new acoustic modelling based on discriminative MaxEn...

متن کامل

A Hybrid MaxEnt/HMM ba

The aim of this work is to develop a practical framework, which extends the classical Hidden Markov Models (HMM) for continuous speech recognition based on the Maximum Entropy (MaxEnt) principle. The MaxEnt models can estimate the posterior probabilities directly as with Hybrid NN/HMM connectionist speech recognition systems. In particular, a new acoustic modelling based on discriminative MaxEn...

متن کامل

Non - Monotonic Reasoning on Probability Models : Indifference , Independence & MaxEnt Part I – Overview

Through completing an underspeciied probability model, Maximum Entropy (MaxEnt) supports non-monotonic inferences. Some major aspects of how this is done by MaxEnt can be understood from the background of two principles of rational decision: the concept of Indiierence and the concept of Independence. In a formal speciication MaxEnt can be viewed as (conservative) extension of these principles; ...

متن کامل

Effectively Building Tera Scale MaxEnt Language Models Incorporating Non-Linguistic Signals

Maximum Entropy (MaxEnt) language models are powerful models that can incorporate linguistic and non-linguistic contextual signals in a unified framework with a convex loss. MaxEnt models also have the advantage of scaling to large model and training data sizes We present the following two contributions to MaxEnt training: (1) By leveraging smaller amounts of transcribed data, we demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015